Resonance and Beats Differential Equations X. Du

e Consider the pendulum equation with a small angle approximation without forcing:
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o Hence, represent this equation generally as X"+a)02X =0

e General equation with forcing x"+a)02x = f (t), where f (t) has angular frequency .

o The associated frequency of w, is f = 2% . This is the natural frequency.

23

o Suppose that f (t) is a sinusoidal function. Let f (t) = Re[Ce'] + Im[Ce'*]
= Note that f (t) still has angular frequency .
o Beats (w+wm,)
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o X, =Re[X,]+Im[X] X, =C,cosm,t +C,Sinat
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o For simplicity, x'(0) = x(0) =0. x = %(cosa)t —cosa,t +sinat —sinaw,t)
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o sin(w_ “o t] represents the beats. Period T = 27
2 o — o,
o cosl L] _sin| L2y represents the rapid oscillations. Period T = 4z
2 2 o+ @,

e Resonance
o A phenomenon that occurs with second-order linear non-homogeneous ODEs

whenw =@, (orw=+/m,* —2p* with damping given x"+2px'+a,’x = f (t)).
o The solution “blows up” — amplitude escapes to infinity
o Examples: child on a swing, Tacoma Narrows Bridge
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Notice that the amplitude of X increases linearly. This is resonance.
o Note: resonance still occurs with other non-sinusoidal periodic functions f (t) with
angular frequency o, , such as square waves, triangle waves, and sawtooth waves.
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